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The problem of the interaction of system of contacting elastic orthotropic cylinders, moving with different velocities in the direction 
of their generatrices, is considered. Generalized orthogonality relations are obtained for the homogeneous stationary solutions 
of this problem and special cases of it. One of the relations is used to solve the problem of a finite parabolic punch moving over 
an elastic strip by the method of piecewise-homogeneous solutions. The problem is reduced to a normal exponential-type 
Poincar6-Koch system. The system of piecewise-homogeneous solutions and the solution of the problem of a semi-infirfite punch 
are constructed in quadratures by the Wiener-Hopf method. © 2000 Elsevier Science Ltd. All rights reserved. 

Stationary mixed problems for a half-plane and a composite plane were investigated earlier in [1-5], 
and correspondence principles were also established in [6] between the integral equations for mixed 
problems of steady oscillations and steady motions of punches. 

1. A S Y S T E M  O F  M O V I N G  C Y L I N D E R S  

The orthogonality of the homogeneous solutions. Suppose Cartesian rectangular systems and coordinates 
O~3rZk (k= 1_2, .~  , N) are attached to N elastic orthotropic infinite cylinders Qk = {x, y, Zk): (X, y) E 

k;Zk e (-- , + ), which have sections D,k and which move translationally with constant velocity Ck 
with respect to fixed space, defined by the system of coordinates Oxyz. The generatrices Sk of the cylinder 
and the direction of motion are parallel to the Oz axis. In the region Qk the coordinates Zk and z are 
related as follows: 

z = zk + Ckt (1.1) 

where t is the time. The elastic characteristics and the density of the cylinders are uniform in Qk, depend 
on k and are independent of Zk and t. On the cylindrical surfaces Fkl C Sk the cylinders are in 
contact with one another under conditions of sliding or antisliding embedding, and the boundaries 

[d2e = Sk \Fkl are stress-free, clamped or are under crossed homogeneous conditions. It is assumed that 
boundary conditions are independent of t at infinity. 

Hence, in the system of coordinates Oxyz for an infinite multilayered cylinder Q = Q1 u Q2 u QN 
with cross-section l'l = fll U fl2 U ... U fIN and mutually mobile parts the problem is homogeneous 
and stationary. 

Consider the vector function Fk(X, y, zb t), (x, y) ~ Ok, as the components of which we take three 
components of the displacement vector and six components of the stress tensor in Qk, which completely 
satisfy the equations of the theory of elasticity. We will also consider the stationary vector function 
F = F(x, y, z), (x, y) ~ l-I with the same components in the cylinder Q. 

By virtue of the fact that the solution is stationary and using relation (1.1), we have 

Fk(x , y ,  zt. , t) = F k ( x , y , z  ~ +ckt ,  O) = F ,  ( x , y ) ~ f 2 ,  

It follows from relations (1.1) and (1.2) that 

• (x, ~,z,O)z, c,F~ F~, (x, y,z~,t)= FL , '= 

(1.2) 

(1.3) 
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Similarly 

F~, (x,y,  z k , t )=Fx ,  F~y (x,y,  zk,t)=F~., F~zk (x,y,  zk , t )=F~ (1.4) 

Relations (1.3) and (1.4) show that, in the system of coordinates Oxyz, Cauchy's formulae and Hooke's 
law (the subscript k in the elasticity constants is omitted for brevity) 

e ~ = ~u l bx . . . . .  ),~: = ~w l ~x + ~u / ~z .... 

{~x = 1~111~x + ~12ey "4" [~13eZ . . . . .  ~ ' x z  = [~55Yx.z' '~xy = P667xy ( 1 . 5 )  

where f3ij are the orthotropy coefficients 13i/= 13/i, 13/j > 0, retain their form and the equations of motion 
take the form 

3Z x. I Ox + ~Xy z I ¢)y + Off z I OZ = pc 2O2w I OZ 2 .... (1.6) 

wherep = pk(x, y, z)  are the densities of the materials, c = ck(x; y, z) are the velocities of the cylinders, 
and (x, y) e Ilk. 

We will consider the orthogonality properties of the homogeneous solutions of this problem for Q. 
Suppose 

Q ° = { ( x , y , z ) : ( x , y ) E ~ ,  z e [a ,b] }  

is a finite multilayer cylinder. Since zk = z at the initial instant, then, when t = 0, 

N 
Qo = UQ~, Qk = l ( x , Y , Z * ) : ( x , Y ) e ~ ,  Zk e[a,b]} 

k=l 

Suppose u~', l~k - pkau~/at 2 (m = +1, 2 . . . . .  are the displacement and inertial force vectors in Qk, 
generated by the ruth root Pm of the characteristic equation of the homogeneous problem for QO, and 
TTk is the vector of the surface stresses on S~--the boundary of Q~. The componen~ of the vectors 
completely satisfy the equations of the theory of elasticity in Q~ and, consequently, Betti s reciprocity law 

L,,,,, =L,,,,,, n = ± L  +_2 .... (1.7) 

L.,,, = E ( P j " , u ~ ) d Q +  j ' ! ( T ~ ' , % ) d S  
*=Lo, s, / 

where L,,~ is the work of the stresses of the mth solution on the elastic displacements of the nth solution 
in a finite multilayer cylinder QO when t = 0 and ( , )  is the scalar product. 

By Gauss' formula and relation (1.7) we have 

N 
L.,. = ~. ~ [cos 0~[ (P~, u~ )dz + (T~", u~ )]dS (1.8) 

E=Is~ 

The inner integral in (1.8) is the original with respect to z of the function P~ u~, and ct is the angle 
between the unit vector q of the outward normal to S~ and the unit vector r of the Oz axis. 

Starting from formulae (1.7) and (1.8) and taking into account the fact that on the side surface of 
the cylinder cosa = 0 we have 

N N 
I/I n n m ~. ~Zkdxdy+ ~.( ~ + ~)[(T~ ,%)-(T~,% )]dS- 0 

k - - ~  k=, d, r;~ (1.9) 
b 

)-(T~ ,% )l;_-, +[(T~ ,% = I[(P~ ,%)-(P~ ,% )]dz Z k  m n n m m n n m . : h  

where r~. (j = 1, 2) is the part of Fky in which z e (a, b). 
On l~kl in an orthonormalized basis of the vectors q, r, s, forming a right triple, the vectors of the 

displacements and surface stresses have the form 
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U = { U q , U r , U s } ,  T = { O q , ' £ q r , ~ q s }  

Hence it follows that if the contacting cylinders are under conditions of sliding or antisliding embedding, 
we have the following equation. 

N N 
Y..[.[ [(Tff', u~) - (T;,', u~')]dS = Y ~ ((;kqU~ - (;~qU~/)dS (1.10) 

k:lr;, 

In view of the continuity of the normal displacements and stresses at the common points of 
neighbouring surfaces F~], the right-hand side of (1.10) is equal to zero. The integrals over F~2, which 
occur in (1.9) are also equal to zero, since the surface ~ 2  is stress-free, is rigidly restrained, and is under 
conditions of sliding or antisliding embedding. Hence, at t = 0 in a stationary orthonomalized basis, 
connected with the system Oxyz, which in this case coincides with all the systems OXyZk, we have, 
henceforth omitting the subscript k 

~.[ Zdxdy = 0 (1.11) 
fl jy 

where O~y is the orthogonal projection of the multilayer cylinder onto the coordinate plane Oxy. 
Equation (1.11) also remains true in the case of  complex homogeneous solutions. 
In fact, suppose u is a complex vector function, which is a homogeneous solution of the problem 

considered. Since the coefficients in Cauchy's formulae and in Hooke 's  law are real, the real and 
imaginary parts of u will also be homogeneous solutions. Hence, the complex vector function 
F.  = (u, v, w, (r~, ~y, (r~, a'~, "r~, "r~} can be split into two real vector functions with the same coefficients. 

Separating the variables in the homogeneous solutions 

u"  = {um,v n,, w ' }  = ug'(x, y)e t'mz, T"  = {xxz, "Cy z, (~z} = T~m (x, y)e t'''z 

p m  ,,,~2_2 . . m [ ~  ,,~,.P,nZ 
= --F,L YmUO 1,.~, y l c  

and substituting them into (1.11), we obtain after integration with respect to z 

~ [pc2(p,, - p,,)(ug', u g ) -  ('[(~', u~))+ (T(~, u~)]dxdy = 0 (p,, #: -p , , )  
xy 

Hence, noting thatpmu~ = aura/oz when z = 0, we have 

n f l l  - T i n  ~ n n n l  , ,~  ~ {pc2[(3um/~Zl:--O, u 0 ) - ( u 0 ,  ~un/3zlz=O)]-(  0 u0)+(T0 'u0)}dxdy 0 
~.~v 

Further, substituting into (1.12) the expressions for the partial derivatives when z = 0 

- = 1~55x.~ - ~w / ~x 3u / 3z = Y xz ~w / ~x - I  

3v I ~z = ~/ yz - ~w I ~y = ~J~Xy z - ~w I 3y 

/ = ( ( ; :  - fJ3, u / - fJ32 v / 

(1.12) 

obtained from (1.5), were find the following relation of generalized orthogonality for the system of 
moving cylinders 

~J [ ( M ' , u n ) - ( u  " ,  Mn)]dxdy = 0  (pn a - p  m) 
t'2xy 

M m = IMP', M~', M.~'} 
(1.13) M~' -,,-I c 2 m m = (P55P - I)'rxz -pc2~w ra I~x, M~ = ( ~ p c  2 - 1)Xy z -pc2~w m I~y 

m - !  2 -~33pc (~3~u /~x+fJ32~v /~y), z=O M3 = (~33P¢  _ 1)G~n - !  2 m m 
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In particular, in y, z coordinates for the problem of plane deformation of a system of contacting N 
orthotropic layers z ~ ( - ~ ,  + ~ ) , y  ~ (Y0,Yl) tO (Yl, Y2) .... tO (YN-V yN),yk-1 < Yk and (1.13) we have 

YN 
. . . . .  ,, ,,, n +M.~"w")dy=0 (Pn ~: (M2u n - w  M 3 - v  M 2 -P,,,) (1.14) 

Yo 

Here  Ou/Ox ~ O. 
Interchangingx and z and the subscripts of the orthotropy coefficients, in accordance with formulae 

(1.5), for one stripx e ( -o% +oo),y e (0,1) we obtain 

I 
I (M~ "u') -v"'M~' -u"M~' +M~'v")dy=O (Pn ~-Pm) 
0 

M~' = ([~llpc 2 -I)0~'  -13~'~l$)2Pc2av " / b y  (1.15) 

M2 = ( ~ p c  2 m 2 m "' - I )Xxy-pC 3u IOy 

The orthogonality relations (1.13)-(1.15) enable one to apply the method of piecewise-continuous 
solutions to mixed stationary problems for systems of infinite elastic cylinders and layers. 

Since the composite region f~ at any instant is mirror-symmetrical about the z = 0 plane, in this 
plane, in addition to the homogeneous solution u m ~ u~ there is a solution u~ = {u'~ n 0 m - w~, mirror- 
symmetrical to it, for the region ~ ,  comprised of the cylinders flk, moving with the previous values of 
the velocities but in the opposite direction -Ck. However,  the square of the velocity c 2 occurs in the 
elasticity equations (1.5) and (1.6), and hence the function u~ is also a solution of the problem for f ib  
in which the velocities have the initial direction Ck. This solution is ortho~onal to the solution u0 in the 
sense of (1.13). Hence, taking into account the equalities )I/F 1 = -M~'I, h ~  2 = -M"~2, h'fl 3 = -M~3, which 
follow from (1.13), we have 

m n+u,,,wn_un, M~ mM~+wn, M~)drdy= 0 (pn~pm) H (-M~ 'u'~ - M2 u " 3  - v  

Adding equalities (1.13) and (1.16), we obtain the stronger orthogonality relation 

SS (umM~ +v "M~ - M~'w" )dxdy = 0 
~xy 

Similarly, from (1.14) and (1.15) we have 

p'.) 

(1.16) 

(1.17) 

>'N ! mM~ I (M~ vn-WmM~)dy=O' ~ (M~nun-v )dy=O ( p ~ , p 2 )  (1.18) 
o yo 

Relations (1.17) and (1.18) are usually employed to solve boundary-value problems for finite and 
semi-infinite cylinders, on the ends of which crossed conditions are imposed, for example, the sliding 
embedding condition. Here, these problems are incompatible with the stationarity condition (1.1). 
However, relations (1.17) and (1.18) are also more effective than (1.13)-(1.15) for solving mixed 
problems for infinite cylinders which are in contact with finite rings or punches. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  OF A F I N I T E  P U N C H  
ON A S T R I P  

Consider the problem of the motion, with constant velocity c, of an orthotropic strip -oo < xa < + ~ ,  
0 ~< Yl ~< 1 with respect to a symmetrical parabolic punch impressed into it. The base of the punch in 
a fixed system of coordinates OoxoYo, Xo = Xl + ct, Y0 = Yl, is described by the equation. 

Y0 ---- 0~0 X2 -- ~ 0 / 2  -- 5 2  + l,  X 0 ~ (-l,  l) (2.1) 

where eq, a 2 and I are certain positive numbers. Suppose the base of the stripyl = 0 is rigidly clamped, 
there is no friction between the punch and the strip, the stresses outside the punch are zero, the velocity 
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of motion is less than the velocity of propagation of Rayleigh waves CR in the orthotropic material, and 
the local deformation energy of the strip under the edge of the punch is limited. 

In the half-strip x0 < 0, 0, Y0 < 1 the solution will be sought in the form of the sum of the 
inhomogeneous solution of the problem of  a semi-infinite punch over the whole of the strip with 
boundary conditions 

u = u = 0 (y  = 0 ) ,  x~y = 0 (y  = 1) ( 2 . 2 )  

G y = O ( x < 0 ,  y =  1), u=OtoX2-2tXolx-ot2(x>O,y= 1) (2.3) 

corresponding to (2.1) in a fixed system Of coordinates Oxy, x = x0 + 1, y =Y0 and a series of piecewise- 
homogeneous solutions of the same problem with singularities a tx  = +**. Whenx0 > 0, 0 < Y0 < I we 
will construct the solution in the system Oxy, where x = So - l ,  in a similar form with fundamental 
conditions (2.2) and mixed conditions. 

v=Oqlx2+2oq) lx - tX2(x<O,y= 1), G y = 0 ( x > 0 ,  y =  l)  (2.4) 

with singularities in the piecewise-homogeneous solutions when x = -**. We will find the coefficients 
in the series in piecewise-homogeneous solutions using the orthogonality relation (1.15) from the 
condition of continuity of the solutions in the interval x0 = 0, O < Y0 < 1. 

We will construct a general solution of the problem in the strip -** < x < +*% 0 < y < I. Interchanging 
the coordinates x and z and substituting expressions (1.5) into (1.6), we obtain equations in the 
displacements. Hence, using the Laplace transformation 

u ( x , y ' = ' ~ i ~  Ul(p,y)el'Xdp, v ( x , y , = - ~ i ~  U2(p,y)el'Xdp (2.5) 

where L is the straight line Rep  = e, we obtain 

(~1' -- P c2 )p2UI + 1}66U{ '+ (1}12 + 1}66)PU2 = 0 
(2.6) 

(1}66 - P c2)p2U2 + 1}22U2 "+ (1}2i + 1}66)PU~ = 0; Uj(p, y) =-" aUj Iay, j = 1, 2 

The solution of system (2.6) has the form 

U I (p, y) = A I_ (B I sin r_py + B 2 cos r_py) + Al+ (B 3 sin r+py + B4 cos r+py) 
U 2 (p, y) = A 2_ ( -B I cos r py + 112 sin r_ py) + A2+ (-//3 cos r+py + B 4 sin r+py) 

AI+ = (1}12 + 1}66)r±' A2+=pc2-1}ll+1}66r2' r± = { [kl + (k2 - 4kok2)~ ](2ko )-I}~ (2.7) 

= 1}221}66, = (1},, - P c2)1}22 + - P c2)1}  - (1},2 + 

;t2 = (1}11  - P cz  )(I}66 - P c 2 )  

The quantities r_ and r+ are positive real numbers and Bq are arbitrary functions of p; q = 1, 2, 3, 4. 

3. S O L U T I O N  OF T H E  I N H O M O G E N E O U S  P R O B L E M S  OF 
A S E M I - I N F I N I T E  P U N C H  

Consider the first problem (2.2), (2.3). Substituting (2.7) into conditions (2.2), we obtain 

BI=-A~IA2+B3 , B2 = -r_-I r+B4 

B 3 = A2_(r+E j_ sin r_p - r Et+ sin r+p)C(p) 

B 4 = r (A2+E I_ cos r p -  A2_EI+ cos r+p)C(p) 

El~ = Al±r± - A2± = 1}|0 - P c2 + 1}i2 r2 

where C(p) is an arbitrary function. 
Satisfying the mixed boundary conditions (2.3), we obtain 

(3.1) 
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(~+(p)+O-(p) = Nt(p)C(p),  V+(p)+ V-(p )  = N2(p)C(p)  
+,,* 0 

~+(p) = ~ (1y(X, l)e-P*dx, cs-(p) = ~ (1>.(x, 1)e-VXdx = 0 
0 -'~ 

4-no 
V+(p) = ~ v (x, I)e-PXdx = 2ix° - 2a°lP - ct2p2 o p3 , V - ( p ) = ' J  u(x ,  1)e-pXdx 

0 

N m (p) = [~12PUt (p, i)+ f22U~(p, 1)]/C(p) = p[D t cos s+p + D 2 c o s s p  + D~] 

N2(P) - U2( p, i ) /C(p)  = (Ill2 + []66 )(P c2 - ~l l )s-s +[ D4 sin s+p + D 5 sin s_p] 

2Dl = (Ill 2 + f66  ) ( ~ t l  - P c2 + f~66 (k2 / ~'0)~) S2- R(c) 

2/92 = (Ill 2 + [i66 )(~il I - P c2 - ~66 (~'2 / ~'0 )~ )s2[ R(c) + 2(~lt - P c2 )P c2 ] 

03 = 2~12 (f12 + f66)2 (ill t _ pc 2)(~.2 / ~'0)~ [([ll I - P c2) f~  + (f12 + P c2 )~29 t ] 

2/94 = s-([it j - P c2 + [~66(~'2 / ~'0) ~ ~, 2D5 = s+(P c2 - [~11 + f66(~'2 / ~'0) ~ )  

R(c) = [(fill -- P c2)[i22 -- [~221(~'2 / ~'0)~ -- (fll -- P c2)p c2, S+_ = r_ +_ r+ 

(3.2) 

Here R(c)  is the Rayleigh function, and the plus and minus superscripts denote that the functions 
are analytic in the right and left half-plane, respectively. 

Eliminating the function C(p) in (3.2), we obtain the Wiener-Hopf equation [7] 

V- (p) + 2~° - 2ct°lP - Ot2p2 p3 = K(p)t~+(p), K ( p ) =  N2(p) 
NI(P ) ,  p e L  (3.3) 

Since Nj(/S) = -Ny(/S) and iVy (p) = Nj(p), the complex zeros of these functions are situated symmetri- 
cally above both coordinate axes of the complex plane and are real with respect to the imaginary axis. 

We will renumber the zeros of the functions N1 and N2, lying in the right half-plane in the order in 
which their real parts increase and we will denote them by ak and bk respectively k = 1, 2 . . . . .  
Re ak ~ Re ak+l, Re bk <~ Re bk+l, a-k  = --ak, b-k  = -bg.  We know [8], that they are situated in a 
certain strip of the complex plane and their real parts are given by the formulae 

Rea,=~(k+Y~), Reb,=X(k+6---~), -2~y~-<2, -1~<~<2 (3.4) 
S+ S+ 

We will assume that the functions N 1 and N2 for any velocity c ~ (0, CR) have no pure imaginary zeros, 
with the exception o fp  = O. For the function 

Nl( i f )  = if[D| ch s+[~ + D 2 ch s_f + D3] 

the simplest sufficient condition for there to be no zeros is that the coefficients D1, D 2 and D3 should 
be positive, which, in the prior to the Rayleigh velocity, velocity range occurs when f12 > 0. This inequality 
is satisfied for the majority of orthotropic materials [9]. For the function. N2 the absence of imaginary 
zeros was proved in [10]. 

Returning to Eq. (3.3) we note that 

1~66$-8+ (~'2 ] ~LO ) 1/62 K(i~) - A° ~ ---> ++.oo 
K(O) = r+E2- _ r-E2+ , ~--~, 

A 0 = (A2+E I_ - A2_EI+ )[EI-(AI+I312 + A2+~22r+)- EI+(AI_~I 2 + A2_l~22r_)] -I 

We will first obtain a solution of the homogeneous problem 

Vo(p) = K ( p ) ~ ( p ) ,  p E L 
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splitting it, first of all, into two Riemann problems [11] 

Vj-(p) = ri(p)cr;(p), j = 1, 2 

Putting KI(p) = Aop -1 tg ~rp, we obtain 

l"(1 + p) Vl_(p ) = A 0 
c~(p) = F(1 / 2 + p) '  (~(-p----'--) 

The function K2(p) = K(p)/K1(p) is real on the imaginary axis and has no zeros and poles 

K2(0)= K(0), K2(i~)=l+O(e_2~l~l), ~--o+oo 
AorC 

Since the index of the function K2(p), p ~ L is zero, the solution of the second Riemann problem has 
the form [12] 

ex_f i at 1 

o~(i~)= K~½(i~)exp{-~t ~ ln[K2(--it)r~l(i~)],d.] 
t 2 _~2 '; 

It follows from Eq. (3.3) that 

V-(p) 
Vo (p) 

2a ° _ 2 C t o l P  _ a2 p2 _ (~+ ( p )  

+ p3Vo(P ) - ~ (p ) ,  pE L 

On the basis of the estimates 

o~(p)=O(p½), t~+(p)[o~(P)I -I =O(p-~), P ~  

obtained respectively from an Abel-type theorem [7], and in view of the fact that the local deformation 
energy of the strip is limited in the neighbourhood of the punch edge, we obtain 

t~+(p) = c~(p)f_(p) 

' .,, /2~0I(Vo*(,O) - / ) ( l  - 1 ) 
x_<,)-- ,vo<0)[ kk Vo<O) 2Vo(0) (Vo(°)  J J J 

(3.5) 

where ~(p)  --- dVo / dp, V~* (p) =- deVo / @2. Reverting to Eqs (3.2), we obtain 

C(p)= P f_(p), R e p < 0  (3.6) 
2 P  

Substitution of expression (3.6) into (3.1) completely determines the functions (2.7) and enables 
formulae (2.5) to be used to find the solution of inhomogeneous problem (2.2), (2.3) 

~, Vo(p)_. "u' ,  uO,(x,Y)=~ i N~p) J-~P) qtP Y)ePXdP, q=1,2,3 ,4  
2 b, 

Here and henceforth ul = u, u2 = ~, u3 = 'l'xy, U4----- O'X U 3 and U4 are Laplace transformants of the 
functions us and u4, and L1 is the contour of integration, which coincides with the imaginary axis, with 
the exception of the neighbourhood of the point p = 0, which it circumvents from the right along a 
semicircle of small radius. 

Similarly, the solution of the second problem (2.2), (2.4) has the form 



316 V. tC Lashchenov and B. M. Nuller 

1 v0+(p) uOz(x' Y)= ~ 2a ~ f+(p)Vq(p, y)ePXdp, 

F(l/2+p) [ 1 ÷~'~inK2(t),dt} 
V0+(P)=A0 F'(/~p~p)exp]-~m'_ I. t - ,  

The functionf+(p) differs fromf_(p) by the replacement of the superscript minus by plus in the second 
formula of (3.5), l + 1/p by l + 1/p and - a2  by +a2, the signs in front of the last two terms in the square 
brackets are replaced by the opposite signs, and the contour L2 circumvents the point p = 0 from the 
left. 

4. SUBSYSTEMS OF P I E C E W I S E - H O M O G E N E O U S  SOLUTIONS 

We will construct two subsystems of piecewise-homogeneous solutions. According to Section 2 each 
element of the first subsystem must satisfy homogeneous conditions (2.2) and (2.3) and have a singularity 
whenx = +~,,. We will represent these elements in the form of the sum of a solution of the fundamental 
problem, defined by conditions (2.2) and the conditions ~ (x, 1) = 0, -~,  < x < + ~ ,  which are found 
from (2.7) whenp = bk, and the solution of the correcting mixed problem, defined by conditions (2.2) 
and the condition 

~y=-Nl (bk )e  hkx (x<0,  y= l ) ,  v =0 (x>0,  y = l )  (4.1) 

The right-hand side of the first condition is the stresses which occur in the kth homogeneous solution 
of the fundamental problem. 

The mixed conditions (2.2) and (4.1), written in Laplace transformants 

ff+(p)+ Nl(bk) = Nt(p)C(p), V-(p) = N2(p)C(p ) 
p - b k 

lead to Wiener-Hopf equation 

c~÷(p)= V-(p) N~(b k) p~L 
K(p) p - bt ' 

Knowing the solution of the homogeneous equation V~(p) = K(p)cr~(p) (see Section 3) and using 
the method of finding the function C(p) from Section 3, we obtain 

C(p) = Nl(bk)V°(P) 
~ (bk )N2 (P)(P - b k ) 

Hence, according to the principle of finding these solutions, the elements of the first subsystem of 
piecewise-homogeneous solutions have the form 

u~(x,y)= ;,kx CkNl(bk) $ Vo(p) 
CkUq(b k, y)e + 2~iff~(bk) L, N2(p)(p-bk)  

q = 1,2,3,4; k = 1,2 . . . .  

p.¥ Uq(p, y)e dp (4.2) 

where C k a r e  arbitrary constants. 
The second subsystem of piecewise-homogeneous solutions with a singularity at x = -~,,, each element 

of which satisfies the homogeneous boundary conditions (2.2) and (2.4), is constructed in a similar way, 
+ + 

where its elements differ from (4.2) by replacing Vo(p) by - V  0(P), the contour L1 by Lz and ~r o(bk) 
by cr+o(bk) (k = - 1, - 2  . . . .  ), where cry(p) = Ao/V~o(-p). 

5. SOLUTION OF THE PROBLEM OF A FINITE PUNCH 

Following Section 2, the solution of the problem of a finite punch will be sought in the form 
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0 Uql (x, y) = Uql (x, y) + ~ Uq (x, y), 
k=l 

..-¢x, 

(x, y), Uq2(X, y) = u°2(x, y)+ ~., Uq 
k = - I  

x < l  

x > - l  

(5.1) 

The constants C k 

Xo = 0 
are obtained from the four conditions of continuity of the solution when 

Uq~(l ,y)=%2(-l ,y) ,  q= 1,2,3,4 (5.2) 

by replacing them with linear combinations of (5.2) with q = 1, 2, 5, 6, where 

usj(x, Y) = ([3/Ipc 2 - 1 ) u 4 j ( x  , Y ) -  ~'~l~12Pc2~)u2) I ~y 

u6)(x , y) = (I]~pc 2 - l)u3j(x, y ) -  pc23u!i 13y, j = 1, 2 

We substitute (5.1) into the new condition (5.2) and expand the contour integral in series in residues. 
Changing the order of summation in the double sums obtained, we obtain (Us and U6 are Laplace 
transformants of the functions u5 and u6, and ~kq is the Kronecker delta) 

[ -  ] ~. Uq(bk, Y) Xk - Z X nT+(-b., bk )e -O" +b')t - S+(bk )e - t ' t  - 
k=l  n=l 

- ] Xk - 5". X .I"_ (-O.,  b k )e ~b~ ÷h,, )t _ S_ (b k )e h~l -- 81q RI (y) + 86q R2 (y) 
--k n=-I 

X, = Cke It'~lt, T+(t, t )  = NI(t)V~(x) S+_(t) = -T- V~:(t)f+_(t) 
- N~ ( x ) G ~  ( t ) ( x  - t)' N~ (t) (5.3) 

t =  1 , 2 , 5 , 6  

Rq(y)= vo (O) )im ° [IVo (O)+ V 0 ( 0 ) ] ~  ap L pN=(~ ) 

q =  1,3, 7; UT(p,y)-~)Ui l~)y 

R2(y) = (13~,pc 2 - i )R3 (y )  - pc2R7(Y) 

We multiply both sides of the four equations (5.3) by -M~I and M~2 from (1.17) and by Ul(bm, y ) and 
U2(b,,,, y), respectively, add them and integrate the result with respect toy from 0 to 1. By virtue of the 
generalized orthogonality relation (1.15), in which u = [/1 and u = U2, this leads to a normal 
Poincar6-Koch system with bilateral determinant 

X,. - ~. X_nT+(-b,,, b,. )e -(t"' +h. )t = S+(b,. )e -h"'t + hm+ 
n=l 

X_,. - ~. X. T ( b. , - b., )e -~h" +t.. )t = S (-bn, )e -b"t + h m_ 
n=l 

2hm_+ = {! [+M~mRI(Y)'T'U2(+bm, Y)R2(Y)]dY} x 

y ) -  M 2 U2(_b,.. y)ldy 

r e = l , 2  . . . .  

Its matrix elements, by relation (3.4), decrease exponentially with respect to the numbers of the rows 
and columns. 
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Using the me thod  of  p iecewise-homogeneous  solutions considered here  one  can solve analytical 
problems with any number  of  punches, periodic problems, and also mixed stationary problems for systems 
of  moving elastic strips and circular cylinders, having mutual -contac t  parts that  are finite with respect  
to z. 
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